Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1035320230500040247
Korean Society for Dental Materials
2023 Volume.50 No. 4 p.247 ~ p.265
Effect of toothpaste with different components on toothbrushing wear resistance of micro-hybrid/nano-filled resin composites
Byeon Seon-Mi

Park Jung-Eun
Kim Kyeong-Seon
Oh Chung-Cha
Ko Seung-O
Lee Min-Ho
Abstract
The purpose of this study was to observe the surface morphology and roughness of micro-hybrid and nano-filled resin composites and compare wear resistance by conducting a toothbrushing wear test with toothpastes with different abrasive ingredients. Two types of resin composites containing micro-hybrid fillers (Z100 Restorative, Filtek Z250) and one type of resin composite containing nanofillers (Filtek Z350 XT) were used. For the toothbrushing wear test, 90 resin composite samples with a diameter of 10 mm and a thickness of 1 mm were prepared. A force of 2 N and 100,000 cycles of brushing were performed using a pin-on-disk wear tester. The toothpastes used in the test were classified into 4 groups according to the abrasive ingredients (hydroxyapatite, calcium carbonate, sodium bicarbonate, and zeolite-M). After the toothbrushing wear test, the surface morphology of the samples was observed using an optical microscope and a scanning electron microscope (SEM), and the surface roughness was measured using atomic force microscopy (AFM). Relatively large filler particles (micro size) protruded from the surface of the micro-hybrid resin composite groups, and small crater-shaped defects were observed. The surface roughness values of the groups that performed the wear test with toothpaste containing zeolite-M were significantly higher than the other groups (P<0.05). The surface roughness value was significantly (P<0.05) highest in the group where the nano- filled resin composite was wear-tested with toothpaste containing zeolite-M. However, regardless of the type of toothpaste, the surface roughness showed low values of less than 0.1 ¥ìm. The surface appeared uniform and smooth compared to the surface of micro-hybrid resin composites. Finally, the nano-filled resin composite showed relatively higher wear resistance than the micro-hybrid resin composite. This means that wear resistance during brushing may indicate the durability of the material in the clinic.
KEYWORD
Resin composite, Toothbrushing wear resistance, Surface roughness, Toothpaste
FullTexts / Linksout information
 
Listed journal information